If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p^2+3p-6=0
a = 3; b = 3; c = -6;
Δ = b2-4ac
Δ = 32-4·3·(-6)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*3}=\frac{-12}{6} =-2 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*3}=\frac{6}{6} =1 $
| 4^(2x-7)=90 | | 5²x-8*5^x-1-17=0 | | 6y+8+2y+10=122 | | 12y+1+4y+3=116 | | x=118x | | 34/476=2/x | | X=40+x+77 | | 3/4-5-1/2m=1 | | x^2+12=225 | | X+77(x=40+x) | | 2^(2x+1)=47 | | -6+21x=20x | | 6(y+4)=3y+33 | | 5y-30=2(y-9) | | -5(y-1)=-3y-11 | | 12x=16x-144 | | 8y-4y=28 | | -d+24=-1 | | 10^-2=(1/100)^-2.y | | (x^2−4x+4)(-28x+17)=-700 | | 17+(-7)=x | | 6(3x+1)+5(10–4x)=39 | | -(-15+7)=x | | 0=-16t+128 | | 108=9x+27 | | -1/4+v=5/8 | | -2/3=x-4 | | 4x+58+10x-35+90=180 | | (W-6)^2=2w^2-11w+6 | | 10x+5=5x–5 | | 6x+12+2x+6=180 | | 1/x=123456 |